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Mechanisms that cause attenuation

Relative motion

between frame

. (Biot, 1956a,b)
Relaxation _ _
and inclusion

(Walsh, 1968,196 " y
Anclasticity

O

Frictional
dissipatio
n

(Walsh, 1966) (Mavko and Nur, 1975)



Mathematical models

A variety of models are
proposed in literature to
address attenuation and
dispersion in rocks.

Most of them assume
nearly linear relation
between attenuation and
frequency over a wide
frequency range.
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Recovered waveform at X = 2m

attenuated pulses in seperate attenuated pulses in stack
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Waveforms In oil sands
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Viscosity

Liquids (25 ° C)

Ethanol*
Acetone*
Methanol*
Water*
Mercury*
Sulfuric acid*
Glycerol*
Olive oll
Molten polymers
Pitch

Glass

VIiscosity (Pa-s)

1.074 X 103
0.306 X 103
0.544 X 103
0.890 X 103
1.526 X 103
24.2 X 103
934 X 103
81 X 103
103

101

1040

*Data from CRC Handbook of
Chemistry and Physics, 73rd
edition, 1992-199

The rest data from Wikipedia
online: en.wikipedia.org



What changes viscosity?

 Viscosity is influenced Beggs & Robinson (1975)
by pressure and GOR, | [ —
but primarily, it's a . — API 5
function of API and T API15 GOR20  scHSTB
termperature. 1\ | T API15 GOR 2000 scf/STB

« Beggs and Robinson's
relation is one of the
most commonly used
relation shown at the
right handside
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Maxwell’'s Model

 Constitutive equation: Maxwell's Model
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Dynamic Spectroscopy (1)

» The dynamic response of the
model to an oscillating
strain rate could provide
Indication to attenuation ~ o{t)==Acos{wi—95)

F(I‘) — -égt?().ﬂ("tr_:t)

» Plug harmonic oscillation PN
Into constitutive equation, < AT T
we get the solution:

. G
« The phase shift is between - 0= arctan( )
the applied stress and G
resultant strain rate




Dynamic Spectroscopy (ll)

Complex shear modulus with harmonic solution:
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Phase velocity and attenuation can be calculated via a complex
wavenumber K:
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Viscosity and frequency bands
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Fluid substitution (1)

Standard linear model
(SLM)

Two fluids with different |
viscosities and shear moduli
are tested.

Parameters used are listed
below:

$=0.1
. =25glcc
CS . =10 GPa
G,.=1GPa( fluid 1)
G,., =02 GPa ( fluid 2)



Fluid substitution (I1)
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Future Prospective P & S transducers
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Conclusions & remarks (I)

Viscosity Is the major mechanism that causes intrinsic
attenuation in oll related materials

Increasing viscosity shifts shear modulus, phase velocity
and dissipation to lower frequency. These variables
remain a constant at viscosity extremes, while change
greatly at intermediate viscosity.

Alpha is low and varies little under high viscosity while at
low viscosity, alpha increases greatly as frequency goes

up.



Conclusions & remarks (lI)

Ultrasonic, sonic and seismic freqguencies have distinct
difference. Coincidence occurs at viscosity and frequency
extremes.

Gassmann’s equation predicts low viscosity fluid well, but
when high viscosity liquid such as heavy oll is involved, it
has to be adapted to yield better fit to lab results
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