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Introduction

Accurate estimation of oil viscosity is essential for reliable simu-
lation of fluid flow in heavy oil fields. Recent studies by
Vasheghani and Lines (2009, 2012) have shown that viscosity
estimation can be obtained by the use of crosswell seismic
tomography and rock physics. A complete description of the
viscosity estimation methodology has been presented in the
Ph.D. thesis of Vasheghani (2011). Vasheghani’s method is
based on the seismic tomography techniques of Quan and
Harris (1997) and the Biot squirt flow theory (BISQ), as
described by Dvorkin and Nur (1993). Seismic tomography is
used to provide tomograms of seismic-Q while BISQ is used to
convert seismic-Q estimates to viscosity estimates. While the
mapping from Q to viscosity is not unique, constraints on the
range of viscosity can be used to provide the best estimate of
viscosity between wells (Vasheghani and Lines, 2012).
In the estimation of Q, seismic tomography is generally done in
two steps as described by Quan and Harris (1997). The first step
is traveltime inversion, in which picked seismic traveltimes are
matched by ray-traced traveltimes through adjustment of
seismic velocities. The traveltime inversion produces the
velocity tomogram and the distance matrix describing the

distance of ray paths in the velocity cells, both of which are used
in the second step of Q-tomography. For this second step, the
Quan-Harris Q-tomography method is used. 
While seismic traveltime + attenuation tomography can reliably
estimate seismic-Q, it is not necessarily the final step in the
inversion process. Tomography can be followed by full wave
inversion to improve the accuracy of the inversion. This FWI
improvement of tomography results was demonstrated for
crosswell data by Zhou et al. (1993) who compared tomo-
graphic and full waveform inversion solutions to sonic logs.
While tomography produced an answer “in the ballpark”, full
waveform inversion improved the answer. Hence, tomography
and FWI inversion methods are sequential and symbiotic. 
A potential problem with FWI is its ability to invert data that is
contaminated with noise. Full waveform inversion treats all
recorded data as signal that is related to properties of the
Earth’s interior. However, this FWI assumption may not always
be valid, due to signal contamination from sources such as
wind noise, instrument noise, traffic noise, or wave noise (in the
case of marine recording). These noise sources may be unre-
lated to properties of the Earth’s interior. In this study, we test a
simple inversion algorithm for Q-estimation for data that has
modest amounts of additive noise. While this testing is not the
final word, a failure of these noise tests would not be a favor-
able FWI performance indicator.

Methodology

The inversion for seismic-Q is best done with borehole meas-
urements such as vertical seismic profiling (VSP) data or cross-
well data. For these borehole data the measurements of seismic
attenuation are done in-situ on transmitted arrivals - with less
ambiguity in the ray paths than with surface measurements of
reflections. For borehole estimation of Q, there are two popular
frequency-domain methods. One is the spectral ratio method of
Spencer et al. (1982) that uses ratios of amplitude spectra for
receivers at different depths. A second method of Quan and
Harris (1997) examines the frequency shift in the centroid of
amplitude spectra as a function of receiver position. Our expe-
rience has shown that these two methods produce similar
results but that the centroid frequency method may be more
robust in noisy environments.
In our tomographic inversion we intend to estimate Q, the
quality factor, which is inversely proportional to the attenuation.

CJEG   15 June 2014

CANADIAN JOURNAL of EXPLORATION GEOPHYSlCS
VOL. 38, NO. 1 (June 2013), P. 15-20

Abstract

The estimation of fluid viscosity in heavy oil fields is
essential for optimizing enhanced oil recovery. Recent
studies have examined methods for determining heavy
oil fluid viscosity using seismic-Q estimation and rock
physics. These Q estimation techniques have used
seismic-Q tomography, as in Vasheghani and Lines
(2012). While tomography can produce worthwhile
results, full waveform inversion (FWI) can provide
improved images by improving the tomography results.
FWI is considered the most general inversion method;
however, it is susceptible to difficulties associated with
noisy input data. In this study, we examine the effects of
additive noise on FWI for modest signal-to-noise ratios. It
is shown that FWI is robust for noisy data, since the noise
does not shift the position of the objective function’s local
minimum from the noise-free case.
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Q is defined as the ratio of energy of a wave over the loss of
energy per cycle multiplied by 2p (Aki and Richards, 2002).

                                                                                                       (1)

In terms of the absorption coefficient, a , of waves that have a
spatial decay of e –ax (where x is distance travelled), it is shown
in Toksoz and Johnston (1981) that Q can be expressed as: 

                                                                                                       (2)

Therefore it can be seen from equation (2) that Q is dependent
on absorption, velocity and frequency. The tomographic solu-
tion for Q starts with traveltime tomography in which we solve
for velocity. Traveltime tomography has been described by
McMechan (1983) and basically involves the solution of travel-
time equations of the form:

                                                                     .                                 (3)

Here ti is the traveltime for the ith ray, ℓij is the distance of the
ith ray in the jth cell and sj is the slowness (reciprocal velocity)
of the jth cell. This produces a set of velocity cells, and a set of
ray traced distances, ℓij in the ray trace modeling.
Attenuation tomography is the second step in this process and
for these purposes we use the algorithm proposed by Quan and
Harris (1997). As the rays travel in each cell, there is attenuation
of wave amplitudes and a lowering of the frequency content as
the waves propagate from source to receiver. The degree of the
frequency lowering can be measured and related to the attenu-
ation. The change in the frequency content of the signal is quan-
tified by the decrease of its centroid frequency as the wave
travels from source to receiver, where the centroid frequency f–
for a signal’s amplitude spectrum, A( f ) is defined as:

                                                                          .                            (4)

Variation of the centroid frequency for a signal travelling from
source to receiver is related to the attenuation coefficient of all
cells using the following tomographic equation from Quan and
Harris (1997):
                                                                                                          

                                                                                                            
                                                                                                       (5)
where subscripts i and j denote the ray cell numbers respec-
tively, a0, j is the attenuation coefficient in the jth cell, f

–
s and f

–
R

are the centroid frequencies at the source and receiver locations,
respectively, and s s

2 is the variance of the source signal spec-
trum. For computational convenience, Quan and Harris (1997)
define their attenuation, a0, to be related to the usual attenua-
tion coefficient, a , by the linear relationship, a = a0, f . We note
that a0, has the dimensions of slowness (namely T/L where
L=Length, T=time).

The values of the velocities from traveltime tomography and
the values of the a0, coefficients from attenuation tomography
can be combined to produce a Q tomogram by the relationship:

                                                                 .                                     (6)

At this point, the Q tomogram can be converted to a viscosity
tomogram by using the BISQ rock physics and constraints from
well information. However, given the tomography + FWI
results shown by Zhou et al. (1993), we may want to go one step
further and do a full waveform inversion.
In full waveform inversion, the goal is to produce a model
whose response provides a good fit to all the digital amplitude
values in a seismic trace. In mathematical terms, the goal is to
minimize some objective function measuring differences
between the observed wavefield, u(yrs,t) and the modeled
wavefield, g(yrs,t), where yrs denotes the location of the
receiver, r, for a given source point, s, and t denotes the time
sample. Shin (1988) and Pica et al. (1990) used the least squares
objective function to do FWI. That is, the following norm, S, is
minimized.
                                                                                                      ( 7) 

Necessary criteria for minimization of S require that 
for all of the model parameters qj (velocity cells, 
Q values, …). As shown by Lines and Treitel (1984), this mini-
mization leads to a series of ill-posed equations of the form:
                                             Ax = b                                           (8) 
Here A is the n by p Jacobian matrix, for n data values and p
parameter values, whose elements are given by             ;

x is the parameter change vector with values xj = qj –qj
0 , and

b=u-g0 is the discrepancy vector between the data vector,u, and
the vector containing the initial model response values, g0. This
least squares form of full waveform inversion can be successful
under the following conditions.
1. The form of the wave equation used to compute the modeled

wavefield g(xrs,t) is appropriate for the recorded data, u(xrs,t).
2. We have the appropriate number of parameters, qj (velocity

cells, Q values, block locations) to minimize S using the
necessary criteria that               , 

3. We have an immense amount of computer power to mini-
mize S for a realistic number of traces and digitized times.

4. The observed seismic data are dominated by signals
caused by changes in the Earth’s interior and are not
corrupted by noise.

With the advent of parallel processing and ever increasing
computation power, conditions 1-3 are being met and worth-
while results have been shown. Condition 4 relates more to the
signal-to-noise ratio in our data which may have a deleterious
effect on full waveform inversion. Both coherent and incoherent
noise will pose a problem for waveform inversion, as pointed
out by Shin et al. (2007). In addressing the noise difficulties for
the seismic-Q estimation, we perform some simple noise tests
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on synthetic data. While these tests may not be definitive, if the
results are not favorable, full waveform inversion would
appear to be problematic in noisy environments.

Analysis and Results

For our tests, we use a model shown in Figure 1 from the paper
by Vasheghani and Lines (2009). The model is a two-layer
system with the real part of the impedance (density*velocity)
being the same in both layers and being equal to 1,500,000
kg/m2-s (velocity = 1500 m/s and density = 1000 kg/m3), but
with Q=210,000 (the Q for water) in the top layer and Q=6.28
(about 2π) in the second layer. The model has 120 by 120 grid
points with cell sizes being 10m. The boundary between layers
is located at the base of row 40. The model and the geometry of
sources and receivers is also shown in Figure 1. The shot is
located at grid point (60,30). The line of receivers is in every
column in row 45; giving a receiver spacing is 10m. The seismic
finite-difference modeling codes of Carcione (2007) have been
used in these computations.

The seismogram will be dominated by transmitted first arrivals
with hyperbolic shape followed closely by a reflected arrival
(caused by Q-contrasts) with a short delay time. The noise-free
model response is shown as the left most seismogram of Figure
2. To simulate noisy data, we add a series of random numbers
to the noiseless signals. These random numbers have a standard
deviation that is 0.2 as large as the standard deviation of the
signal, giving us a signal-to-noise ratio of 5.0 for the noisy traces
on the right hand side of Figure 2.

First we consider the case of inverting a noiseless seismogram.
If we choose an incorrect initial guess for Q in layer 2 as being
Q0=15 rather than Q=6.28, we obtain the seismogram for the
initial guess as being the middle seismogram in Figure 3. We
then invert for values of Q by iteratively solving equation (8) for
the parameter change, x, and updating Q using Q=Q0+ x . We
continue to invert for Q by iteratively solving (8) and contin-
uing to update Q until S in equation (7) is acceptably small. The
convergence to an acceptable answer of Q=6.09 takes only 3
iterations and is outlined by Table 1. The decrease in the value
of S is also shown in Table 1. The modeled seismogram for the
converged answer, as shown by the right hand seismogram in
Figure 3, is almost identical to the data. Hence, the inversion
works well for the case of noiseless data.
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Figure 1. The model is for a synthetic seismogram of 120 by 120 grid
points, with grid points separated by 10m. Layer 1 (yellow) has Q=210000
in rows 1-40 and Layer 2 (blue) has Q=6.28. The density is equal to 1000
kg/m3 for both layers and the velocity is equal to 1500 m/s for both layers.
The source position denoted as the star is at grid point (60,30) and a line
of receivers is located at row 45 (just below the layer interface) with
receivers at every column in the grid.

Figure 2. The seismic traces used in the FWI testing. The display shows the
first 300 samples (300 ms) for every second trace for t grid points 40-119.
Traces 0-39 show the noiseless seismogram for the model and shooting
geometry of Figure 1; Traces 40-79 show a noisy seismogram (S/N ratio
=5) and traces 80-119 show the very noisy seismogram (S/N ratio =2.5).
Sample interval =1ms. Trace spacing in display = 20m.

Figure 3. Traces 0-39 show the noise-free model data used in the initial test;
Traces 40-79 where Q=6.28. Traces 40-79 show the model response of the
initial guess of Q=15; (right) and traces 80-119 show the converged result
of inversion after 3 iterations with Q=6.09. The inversion result is nearly
identical to the data.
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The question that then arises is one related to noise. How does
additive noise affect the inversion solution? In other words, if
we replace the data vector u by a vector of data plus noise, u +
n, will the inversion be seriously affected? We try this for a
additive noise in which the signal-to-noise ratio is S/N =5 and
then for the case where S/N=2.5.

We note from Figure 4 that noise has not greatly affected the
FWI inversion result for this case of a modest S/N ratio. The
converged value of Q is 6.33, although the error is slightly
worse than for the noise-free case. 
If we then use noisier data, with S/N = 2.5, we test the robust-
ness further. Figure 5 shows this result. With the same initial
guess, the inversion produces a result that is very close to the
desired result, although the error of fit is worse than the
previous cases.

Table 1 gives a summary of the convergence of the inversions.
We note that in all cases it took only 3 iterations to reach a very
good estimate for Q, although the error of fit was greater in the
noisier cases, as expected.

      Iteration          Value of Q         Error           Value of Q          Error          Value of Q         Error
       number           (noiseless)                                (noisy)                               (very noisy)

  0(first guess)           15.00          .012005            15.00           .017965            15.0            0.15882

             1                         2.00          .061620              2.33           .052797              2.67         0.18959

             2                         4.48          .004056              5.15           .010938              4.80         0.14749

             3                         6.09          .000028              6.33           .006555              6.26         0.13638

Table 1: A comparison of the inversion results for the noiseless seismic
section and the noisy seismic sections of Figure 2. It is interesting that for
the first iteration in the noisy case, the value of Q is slightly better and the
error is slightly less, than for the noiseless case.

A graph of the iterative inversion for the noiseless, noisy, and
very noisy cases is shown in Figure 6. We notice that from this
figure and the table that there is a steady improvement in the
model from iterations 1 to 3, and that the inversion for Q values
in all three cases is acceptably close to the true value of 6.28,
despite the fact that the error of fit is worse as the noise increase
(as expected). Despite the error of fit becoming worse with
noise, the inversion for the noisy data may be slightly better
than the noiseless case.
That is, the noise for these cases does not appear to have shifted
the correct position of the local minimum. A graph of error for
the various data sets and the various values of Q is shown in
Figure 7. The position for the local minimum for various ranges
of Q stays in about the same position and this is shown in
Figure 7. To understand this better, we can plot the error of fit
for the case of the noiseless data and the error of fit for the noisy
data cases. We plot the errors for the three data sets for Q=2, 4,
6, 8 and 10 (Q values in the neighbourhood of the correct
answer). The error values for Figure 7 are shown in Table 2. As
expected, we note that the error of fit level is higher for the
noisy seismic data than the noiseless data. The local minimum
for the noisy case does not go below the noise level for our data.
However, we also note that the local minimum of the error in all
three cases is slightly greater than Q=6, near the true value of
6.28. Therefore it is not surprising that the iterative inversion for
both data sets produces acceptable answers despite the fact that
the error level is higher for the noisy case. The algorithm is a
Gauss-Newton approach that seeks out the local minimum. The
noise has not damaged the answer in this case.

     Q value         Error for noiseless case          Error for noisy case         Error for very noisy case

         2.0                           0.06162                                   0.06938                                   0.09026

         4.0                           0.00768                                   0.01468                                   0.03480

         6.0                           0.00003                                   0.00661                                   0.02639

         8.0                           0.00144                                   0.00781                                   0.02729

       10.0                           0.00457                                   0.01077                                   0.03009

Table 2: The errors for the noiseless seismogram and the noisy seismogram
are shown for various values of Q.
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Figure 4. Traces 0-39 show the noisy model data used in the test for
S/N=5; traces 40-79 show the model response of the initial guess of Q=15;
traces 80-119 show the converged result of inversion after 3 iterations with
Q=6.33. The inversion is nearly identical to a noise-free version of the data
but the error of fit is slightly worse due to the noise.

Figure 5. Traces 0-39 show the noisy model data used in the test for
S/N=2.5; traces 40-79 show the model response of the initial guess of
Q=15; traces 80-119 show the converged result of inversion after 3 itera-
tions with Q=6.26. The inversion produces and excellent answer, but the
error of fit is worse than the cases in Figures 3 and 4.
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The reason for the robustness of our full waveform inversions
in this simple example may lie in the fact that our additive noise
was basically a set of random numbers with zero mean. Also
the noise levels were modest (S/N=5 and S/N=2.5).
Further insight into the robustness can come from revisiting
equation (8). Since the matrix A is rectangular, we can find a
least squares solution to (8) by multiplying the equation by AT

to produce:
                                           ATAx=ATb                                    (9)
Now if we consider the noisy data case we replace b by b+n and
equation (9) becomes:

                                   ATAx=ATb + AT n.                         (10)
However, if the noise is random and zero mean, the second
term on the right hand side, AT n, will tend to zero especially if
A smoothly varying. This second term is essentially a crosscor-
relation of a random sequence with one that is smoothly
varying and its value will generally be small compared to the
first term. This and the behavior of the error function have
meant that the full waveform inversion is robust, at least for
modest noise levels.
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Figure 6. Iterative inversion for Q value of second layer for the case of the
noiseless data (top figure) and the case of noisy data (middle figure) and
the case of very noisy data (bottom). The top inversion gives a Q value of
6.09, the middle inversion gives a Q value of 6.33 and the bottom inversion
gives a Q value of 6.26. The correct value is Q=6.28.

Figure 7. Error vs Q for the noise-free case (top). Error vs Q for the noisy
case (middle) and for the very noisy case (bottom).
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Conclusions

The estimation of oil viscosity is crucial for characterization of
heavy oil fields. One of the methods of estimating viscosity is
through inversion for seismic-Q. Q-tomography has been used
for these inversions, but it may be worthwhile to follow tomog-
raphy with full waveform inversion. One of the concerns with
full waveform inversion is its sensitivity to noise in the data. In
this short note, we examine the inversion of Q for noise-conta-
minated signals. From our initial computational experiments, it
appears that full-waveform inversion has not been seriously
affected by moderate amounts of additive noise. The robustness
of full waveform inversion may come from the fact that the
position of local minima for the correct Q values has not been
changed. Also the lack of correlation of random noise with the
data has not seriously damaged the solutions. More tests of
robustness need to be done. However, for these initial tests, full
waveform inversion appears to be robust for estimation of
seismic-Q.
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